Automated diagnosis of epileptic EEG using entropies

نویسندگان

  • U. Rajendra Acharya
  • Filippo Molinari
  • Subbhuraam Vinitha Sree
  • Subhagata Chattopadhyay
  • Kwan-Hoong Ng
  • Jasjit S. Suri
چکیده

Epilepsy is a neurological disorder characterized by the presence of recurring seizures. Like many other neurological disorders, epilepsy can be assessed by the electroencephalogram (EEG). The EEG signal is highly non-linear and non-stationary, and hence, it is difficult to characterize and interpret it. However, it is a well-established clinical technique with low associated costs. In this work, we propose a methodology for the automatic detection of normal, pre-ictal, and ictal conditions from recorded EEG signals. Four entropy features namely Approximate Entropy (ApEn), Sample Entropy (SampEn), Phase Entropy 1 (S1), and Phase Entropy 2 (S2) were extracted from the collected EEG signals. These features were fed to seven different classifiers: Fuzzy Sugeno Classifier (FSC), Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Probabilistic Neural Network (PNN), Decision Tree (DT), Gaussian Mixture Model (GMM), and Naive Bayes Classifier (NBC). Our results show that the Fuzzy classifier was able to differentiate the three classes with a high accuracy of 98.1%. Overall, compared to previous techniques, our proposed strategy is more suitable for diagnosis of epilepsy with higher accuracy. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition

The electroencephalogram (EEG) signal is very important in the diagnosis of epilepsy. Long-term EEG recordings of an epileptic patient contain a huge amount of EEG data. The detection of epileptic activity is, therefore, a very demanding process that requires a detailed analysis of the entire length of the EEG data, usually performed by an expert. This paper describes an automated classificatio...

متن کامل

P81: Detection of Epileptic Seizures Using EEG Signal Processing

Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...

متن کامل

Recognition of Epileptic EEG Using Probabilistic Neural Network

Epilepsy is one of the most common neurological disorders that greatly impair patients’ daily lives. A classifier for automated epileptic EEG detection and patient monitoring can be very important for epilepsy diagnosis and patients’ quality of life, especially for rural areas and developing countries where medical resources are limited. This paper describes our development of an accurate and f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomed. Signal Proc. and Control

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012